1,854 research outputs found

    A duality principle for selection games

    Full text link
    A dinner table seats k guests and holds n discrete morsels of food. Guests select morsels in turn until all are consumed. Each guest has a ranking of the morsels according to how much he would enjoy eating them; these rankings are commonly known. A gallant knight always prefers one food division over another if it provides strictly more enjoyable collections of food to one or more other players (without giving a less enjoyable collection to any other player) even if it makes his own collection less enjoyable. A boorish lout always selects the morsel that gives him the most enjoyment on the current turn, regardless of future consumption by himself and others. We show the way the food is divided when all guests are gallant knights is the same as when all guests are boorish louts but turn order is reversed. This implies and generalizes a classical result of Kohler and Chandrasekaran (1971) about two players strategically maximizing their own enjoyments. We also treat the case that the table contains a mixture of boorish louts and gallant knights. Our main result can also be formulated in terms of games in which selections are made by groups. In this formulation, the surprising fact is that a group can always find a selection that is simultaneously optimal for each member of the group.Comment: 8 pages, 2 figure

    Attacks on the Search-RLWE problem with small errors

    Get PDF
    The Ring Learning-With-Errors (RLWE) problem shows great promise for post-quantum cryptography and homomorphic encryption. We describe a new attack on the non-dual search RLWE problem with small error widths, using ring homomorphisms to finite fields and the chi-squared statistical test. In particular, we identify a "subfield vulnerability" (Section 5.2) and give a new attack which finds this vulnerability by mapping to a finite field extension and detecting non-uniformity with respect to the number of elements in the subfield. We use this attack to give examples of vulnerable RLWE instances in Galois number fields. We also extend the well-known search-to-decision reduction result to Galois fields with any unramified prime modulus q, regardless of the residue degree f of q, and we use this in our attacks. The time complexity of our attack is O(nq2f), where n is the degree of K and f is the residue degree of q in K. We also show an attack on the non-dual (resp. dual) RLWE problem with narrow error distributions in prime cyclotomic rings when the modulus is a ramified prime (resp. any integer). We demonstrate the attacks in practice by finding many vulnerable instances and successfully attacking them. We include the code for all attacks

    Character sums with division polynomials

    Full text link
    We obtain nontrivial estimates of quadratic character sums of division polynomials Ψn(P)\Psi_n(P), n=1,2,...n=1,2, ..., evaluated at a given point PP on an elliptic curve over a finite field of qq elements. Our bounds are nontrivial if the order of PP is at least q1/2+ϵq^{1/2 + \epsilon} for some fixed ϵ>0\epsilon > 0. This work is motivated by an open question about statistical indistinguishability of some cryptographically relevant sequences which has recently been brought up by K. Lauter and the second author

    Ring-LWE Cryptography for the Number Theorist

    Get PDF
    In this paper, we survey the status of attacks on the ring and polynomial learning with errors problems (RLWE and PLWE). Recent work on the security of these problems [Eisentr\"ager-Hallgren-Lauter, Elias-Lauter-Ozman-Stange] gives rise to interesting questions about number fields. We extend these attacks and survey related open problems in number theory, including spectral distortion of an algebraic number and its relationship to Mahler measure, the monogenic property for the ring of integers of a number field, and the size of elements of small order modulo q.Comment: 20 Page
    • …
    corecore